R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
(AUTONOMOUS)

B.Tech. II Year II Semester Supplementary Examinations December-2025
SOFTWARE ENGINEERING

		SOFTWARE ENGINEERING (Common to CSE & CSIT)			
Time: 3 Hours		Max. Marks: 70			
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	2	Define software engineering.	CO1	L1	2M
	ŀ	Describe the waterfall model.	CO1	L2	2M
	0	Demonstrate how to write a functional requirement.	CO2	L3	2M
7.0	d	Analyze the consequences of poor risk management.	CO2	L4	2M
	e	Characteristics of a good software design.	CO3	L2	2M
	f	What is structured analysis?	CO3	L1	2M
	g	Define black-box testing.	CO4	L1	2M
	h	Demonstrate white-box testing on password validation.	CO4	L3	2M
	i	Define CASE tools.	CO5	L1	2M
	j	What is software reuse?	CO5	L1	2M
	ě,	(Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-I			n a
2	а	Describe spiral model with a neat diagram.	CO1		#3.#
		Compare different software life cycle models.	CO1	L2	5M
		OR	COI	L4	5M -
3	a	A startup company needs to build a prototype quickly to present	CO1	L3	5M
		to investors. Recommend the appropriate software development model and explain how it helps in rapid delivery.			
	b	Use agile model to explain iterative development.	CO1	L4	5M
		UNIT-II			
4	a	Explain steps in requirement gathering.	CO2	L2	5M
	b	Analyze the need for risk management in projects.	CO2	L4	5M
		OR			
5	a	Evaluate project estimation techniques and compare empirical vs heuristic models.	CO2	L5	5M
50	b	Write SRS for an online ticket booking system.	CO2	L3	5M

UNIT-III

		UNII-III			
6	a	Evaluate cohesion and coupling with suitable examples. How do they impact maintainability?	CO3	L5	5M
17	b	Justify the need for effective UI design in increasing user productivity and satisfaction.	CO3	L5	5M
		OR			
7	a	A university ERP system needs modularity—apply design principles to plan.	CO3	L2	6M
	b	Design a user interface for a mobile banking app targeting elderly users. What design decisions will you make.	CO3	L3	4M
		UNIT-IV			
8	a	Compare ISO 9000 vs Six Sigma.	CO4	L4	6M
	b	Analyze impact of poor documentation.	CO4	L4:	4M
		OR .			
9	a	During integration, modules fail. Discuss how testing helps.	CO4	L2	5M
	b	During integration testing of a payroll system, several modules fail to communicate properly. Analyze how white-box and black- box testing could help identify and resolve the issues.	CO4	L4	5M
		UNIT-V	8		
10	a	Describe CASE environment architecture.	CO5	L2	5M
	b	How to apply reverse engineering and reuse in Legacy system maintenance.	CO5	L3	5M
		OR			
11	a	Evaluate impact of CASE on SDLC productivity.	C05	L5	5M
	b	A 10-year-old legacy system needs frequent bug fixes and changes in functionalities. Describe how reverse engineering and maintenance models can be applied to extend the life of this system.	C05	L3	5M
			,		

*** END ***